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Dislocation dynamics simulations were carried out to study the cyclic stress-strain
response of crystals containing misfit particles. The strength differential, manifested by the
difference in the magnitudes of tensile and compressive flow strength during continuous
loading, is examined. The computational model consists of a spherical particle and a single
Frank-Read source in a specified slip plane inside a face-centered-cubic crystal. Attention is
devoted to the dislocation glide behavior affected by the misfit elastic field, even when the
slip plane does not intersect the particle. The multiplication of dislocation from the single
source, the formation of pile-up loops as well as the unraveling of the loops upon reversed
loading were all captured by the simulation. It was observed that the existence of a misfit
particle gives rise to strength differential, a phenomenon of fundamentally different nature
with regard to the widely recognized Bauschinger effect. The “back stress” concept was
employed to analyze the simulation result. The effects of particle size and applied strain
rate on the overall strength differential were also examined.
C© 2004 Kluwer Academic Publishers

1. Introduction
Metals containing particles that are not penetrable by
dislocations frequently display reduced yield strength
during reversed loading in compression after an initial
amount of tensile plastic deformation (or vice versa).
This phenomenon of “strength differential” upon load
reversal, termed the Bauschinger effect, has long been
observed in many precipitation hardened alloys [1–
4], dispersion strengthened metals [5–7], and metal
matrix composites [8–10]. Prevailing theories for the
Bauschinger effect are largely based on the concept of
back stress, arising from dislocation pile-up in the form
of Orowan loops or others, that aids in plastic deforma-
tion during the reversed loading phase. If one ignores
the work hardening due to the interactions of mobile
dislocations with solute atoms and forest dislocations,
the forward yield strength (σ f

y) of a particle-containing
metal can be expressed, conceptually, as

σ f
y = σ0 + σB, (1)

where σ0 is the stress required to bow out the disloca-
tions and σB is the back stress exerted on the matrix
by the particles [11]. Upon reversed loading, the yield
strength σ r

y still consists of the contribution from σ0, but
σB now assists the deformation rather than opposing it.

∗Author to whom all correspondence should be addressed.

Therefore,

σ r
y = σ0 − σB. (2)

As a consequence, the strength differential �σ , defined
to be

�σ = σ f
y − σ r

y, (3)

becomes �σ = 2σB. The quantity 2σB characterizes
the extent of permanent softening in reversed loading.

An apparent source for the back stress σB in the pre-
vious equations is the Orowan loops formed around
the particles when the slip planes intersect the imper-
meable obstacles [12]. This, however, is not the sole
contribution to σB, as will be illustrated in the present
paper. We employ dislocation dynamics (DD) simula-
tions to study the dislocation-particle interaction and
its consequences under the condition that the disloca-
tion glide path is clear of any impeding particle. The
interaction arises from the particle-induced misfit elas-
tic strain field in the metallic matrix. Such elastic field
exists in almost all metals and alloys containing even
incoherent precipitates or reinforcements, primarily in
the form of thermal expansion mismatch strains gener-
ated during processing. The movement of dislocations
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can be affected, resulting in sub-structures that con-
tribute to the back stress and therefore the strength dif-
ferential. It is worth pointing out that the elastic inter-
action considered here occurs much more frequently
in materials with dilute particle concentrations than the
Orowan looping events. This is because a given disloca-
tion segment is expected to traverse the metal matrix for
a relatively long distance before, if ever, approaching a
particle head-on.

In this work, attention is devoted to a representa-
tive volume element containing a single spherical par-
ticle and one Frank-Read dislocation source. The over-
all cyclic stress-strain curves are simulated with the
effects of particle size, loading direction and loading
rate examined. Representative snapshots of dislocation
configurations during deformation are shown. The in-
terpretation of the back stress and particle strengthening
effects within the present simulation framework and the
implications in the actual Bauschinger effect found in
engineering materials are also discussed.

2. Approach
2.1. Problem geometry
The computational domain, shown in Fig. 1, is a cube
of side length 10,000 b, with b being the magnitude of
the Burgers vector of the material, used as a measure of
the length scale in this study. The x , y and z-axes are
parallel to the [100], [010] and [001] directions, respec-
tively, of the face-center-cubic (FCC) crystal; the origin
is fixed at the center of the cube. A spherical particle
of radius 2,000 b is located at the cube center. This is
equivalent to a particle volume fraction of about 3.4%.
In some calculations different radius values are used to
study the effect of particle size. The initial Frank-Read
source is represented by a straight dislocation, parallel
to the [1̄10] direction with a length of 10,000/

√
2 b, ly-

Figure 1 Schematic of the problem geometry. The x , y, z axes are in
the directions of [100], [010] and [001], respectively. The origin is set
at the center of the cube (and the spherical particle). The (111) slip
plane containing the Frank-Read dislocation source is highlighted. The
dislocation source, parallel to the [1̄10] direction, has two end nodes
fixed at the coordinates of x = 1667 b, y = −3333 b, z = −3333 b and
x = −3333 b, y = 1667 b, z = −3333 b, where b is the magnitude of
the Burgers vector.

ing in a (111) slip plane highlighted as a triangle in the
figure. In this case the closest distance between the slip
plane and the edge of the particle is 887 b. Both ends
of the dislocation are fixed throughout the deformation
when the dislocation experiences recurring bow-out un-
der resolved shear stress. All three possible Burgers
vectors associated with the (111) slip plane are consid-
ered in the simulation: b√

2
[101̄], b√

2
[01̄1] and b√

2
[1̄10].

The applied uniaxial loading is in the direction of [001]
(z axis).

2.2. Stress field due to the misfit particle
The stress field in the metal matrix imposed by the
misfit particle is based on the analytical solution of a
boundary value problem [13]. The problem considers
an isotropic elastic spherical particle that is fitted into
a smaller spherical hole in an isotropic infinite elas-
tic medium such that the volumetric misfit is δV . The
stresses generated in the matrix, expressed in terms of
spherical coordinates (r , θ , φ), are

σrr = −4µmC

r3
, σθθ = σφφ = 2µmC

r3
, (4)

where

C = δV

4π
(
1 + 4µm

3Kp

) , (5)

and µ and K are the shear modulus and bulk modulus,
respectively; and the subscripts m and p refer to matrix
and particle, respectively.

2.3. DD formulation
In recent years DD has been developed as a powerful
tool by which microscale phenomena involving dis-
locations in crystals can be simulated [14–24]. Such
simulations often are not based upon phenomenolog-
ical parameters, rendering them an inherently more
fundamental approach for studying plastic deforma-
tion. In three-dimensional DD simulations, continu-
ously curved dislocation lines are approximated with
a set of connected straight segments. The premise is
that the self-stress of the curved dislocation, which is
not explicitly known in general, can be adequately rep-
resented by the sum of the self-stresses of the discrete
linear dislocation segments utilizing superposition. The
self-stress of a straight dislocation segment in an infinite
media [25, 26] serves as a primary ingredient incorpo-
rated into the DD code. The Peach-Koehler force of the
segment i is given by

�Fi = (
σ total

i · �bi
) × �ξi + �Fi,forward neighbor

+ �Fi,backward neighbor, (6)

where �bi and �ξi represent the Burgers vector and line
sense (unit vector), respectively, of dislocation segment
i . The last two force terms on the right-hand side of

3594



Equation 6 give the self-force, arising from two nearest-
neighbor segments, which acts on the segment i [19].
The term σ total

i is the total stress tensor evaluated at the
center of segment i ,

σ total
i =

N∑

j=1, j �=i

σ j + σ applied + σ particle, (7)

where the subscript j represents other dislocation seg-
ments besides i , N is the total number of segments,
σ applied is the externally applied stress, and σ particle is
the stress field caused by the particle, including the
misfit field (given by Equations 4 and 5) and the image
stress. The results presented in this paper do not in-
clude any contribution from the image stress, because
incorporating image stresses in a rigorous manner is
exceedingly difficult and the image stress makes only a
very small contribution in the present problem. Details
will be discussed in the following sections.

The results from the Peach-Koehler force calcula-
tions are used to advance the dislocation segments
based on the linear mobility model,

�vg
i = Mg

i
�Fg

i , (8)

where �vg
i is the glide velocity of segment i , Mg

i is the
dislocation mobility, and �Fg

i is the glide component of
the Peach-Koehler force after subtracting out the Peierls
lattice friction. The evolving dislocation structure such
as bow-out, expansion/shrinkage of loops, and pile-up
can thus be simulated. The macroscopic plastic strain
tensor Dp and the plastic spin W p are expressed as

Dp =
N∑

i=1

−liv
g
i

2V
(�ni ⊗ �bi + �bi ⊗ �ni), and (9)

W p =
N∑

i=1

−liv
g
i

2V
(�ni ⊗ �bi − �bi ⊗ �ni), (10)

where �ni(= �vg
i

v
g
i
× �ξi) is the unit normal vector of the slip

plane for segment i , li is the segment length, and V is
the volume of the simulated crystal. The stress rate is
determined by the Hooke’s law,

σ̇ = [Ce](D − Dp), (11)

where [Ce] is the elastic stiffness tensor and D is the
total strain rate tensor. The overall stress-strain response
of the model crystal can thus be simulated.

2.4. Simulation parameters
The matrix material is single-crystal aluminum, with
the magnitude of Burgers vector b equal to 0.286 nm.
The dislocation mobility is taken to be 100 Pa−1 s−1

in the calculations. The base strain rate used in this
work is 0.1 s−1. Other magnitudes are also used for
examining the effect of strain rate on the overall flow
stress. The time step and dislocation segment length are
mainly fixed at 10−9 s and 150 b, respectively. These

quantities have been checked for ensuring that the so-
lution is independent of mesh size and time step. The
elastic constants of the matrix (with subscript m) and
the particle (with subscript p) are µm = 26.32 GPa,
νm = 0.33, µp = 195.1 GPa and νp = 0.17, where
µ and ν represent shear modulus and Poisson’s ratio,
respectively. The bulk modulus needed for calculating
the misfit stress field in Equations 4 and 5 is related to
µ and ν by

K = 2µ(1 + ν)

3(1 − 2ν)
. (12)

The volumetric misfit δV caused by the particle in
Equation 5 is taken to be 3% of the particle volume. This
misfit is considered reasonable for aluminum alloys
containing inherent intermetallic- or ceramic-based in-
clusions or for discontinuously reinforced aluminum
containing ceramic reinforcement. The linear misfit
strain induced by thermal expansion mismatch between
matrix and particle during thermal excursion is ex-
pressed as

�ε = �α · �T, (13)

where �α and �T are the difference in coefficient of
thermal expansion and temperature difference, respec-
tively. Taking 24 × 10−6 K−1 and 6 × 10−6 K−1 as α

for matrix and particle, respectively, and taking �T as
550 K, one obtains �ε of approximately 0.01 and thus
the volumetric misfit strain of approximately 0.03.

It is worth pointing out that, although the matrix ma-
terial in the simulation box is a single crystal, isotropic
material properties are assumed because the focus here
is simply to utilize the representative volume element,
containing a single particle, to study fundamental mi-
cromechanical features. For the purpose of easy inter-
pretation of results, the extent of model complexity is
kept at a minimum. The use of anisotropic elasticity,
as opposed to isotropic elasticity, to quantify the stress
field of dislocation segments in DD simulation has been
shown to result in differences, in the case of molybde-
num, as high as 15% for short-range dislocation inter-
action [27]. However, for long-range interaction, the
use of isotropic elasticity is sufficient.

3. Results
3.1. Particle induced strength differential
Fig. 2 shows the simulated overall uniaxial stress-strain
response of the crystal with no embedded particle. The
Burgers vector of the gliding dislocation is b√

2
[101̄].

The simulation features a forward tensile loading to an
applied strain of 0.0025, followed by a reversed load-
ing back to zero strain. During forward loading, the
elastic-plastic nature of the response is evident, with
a plastic flow strength (defined as the maximum peak
stress reached) of about 52 MPa. Upon load reversal
the elastic unloading response is also evident. Subse-
quent compressive yielding occurs at a stress of about
52 MPa. It is clear that this reference case shows no
strength differential. As mentioned in Section 2.1, two
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Figure 2 Simulated uniaxial stress-strain response of the crystal with no embedded particle. The Burgers vector of the gliding dislocation is b√
2

[10 1̄]. The simulation consists of tensile loading at a constant strain rate of 0.1 s−1 to an applied strain of 0.0025, followed by a reversed loading at
the same strain rate to zero strain.

other Burgers vectors were also considered in our cal-
culations. The Burgers vector of b√

2
[01̄1] results in es-

sentially the same stress-strain curve as in Fig. 2. In
the case of b√

2
[1̄10], however, only a linear elastic be-

havior can be seen because the loading does not have a
resolved shear stress component in the direction of the
Burgers vector. As a consequence, in the remainder of
this paper simulation results based on only the Burgers
vector b√

2
[101̄] are presented.

Fig. 3a–f show the snapshots of dislocation con-
figurations corresponding to points a, b, c, d, e, and
f labeled in Fig. 2. These views are normal to the
(111) slip plane and the triangle indicates the intersec-
tion of the slip plane with the simulation box. Fig. 3a
shows the initial Frank-Read source pinned at each end.
Fig. 3b shows the dislocation at the beginning of ten-
sile loading. The source is bowing out under the ap-
plied stress but the direction of bow is skewed to the
left because the Burgers vector (shown in this figure)
is not perpendicular to the initial dislocation line in
(a). Fig. 3c shows the dislocation spiraling around the
terminal point, which corresponds to the beginning of
plastic flow in the crystal. The majority of the loop
is outside the cubic domain so only the two end parts
of the dislocation are visible here. Fig. 3d shows the
configuration at the strain reversal point. Many cy-
cles of dislocation bow-out and loop generation pro-
cess have already occurred by this time. Fig. 3e shows
that, upon entering the compressive regime, the dislo-
cation bows out in the opposite direction. When the
reversed yield stress is reached, Fig. 3f, the dislocation
again spirals in the opposite direction about the terminal
points.

Fig. 4 shows the simulated stress-strain response of
the crystal containing a spherical particle of radius
2,000 b. It can be seen that the existence of the elastic
misfit field causes a strong strength differential: the ten-
sile and compressive flow stresses are approximately
94 and 36 MPa, respectively. Comparing Fig. 4 with

Figure 3 Dislocation configurations corresponding to points labeled on
the simulated stress-strain diagram (Fig. 2) of the crystal with no embed-
ded particle. The figure shows dislocation configurations for (a) initial
Frank-Read source; (b) at the beginning of elastic deformation in ten-
sion; (c) at the beginning of plastic deformation in tension; (d) at the
strain reversal point; (e) during elastic deformation in compression; and
(f) at the beginning of plastic deformation in compression.

Fig. 2, the particle-bearing material shows a strength-
ening effect in tension but a weakening effect in sub-
sequent compression. In Fig. 4 points a, b, c, d, e, and
f are labeled along the curve; the snapshots of dislo-
cation configuration corresponding to these stages are
shown in Fig. 5a–f. For clarity the particle is removed
from these figures since, in this viewing direction, the
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Figure 4 Simulated uniaxial stress-strain response of the crystal with an embedded particle of radius 2,000 b. The Burgers vector of the gliding
dislocation is b√

2
[101̄]. The simulation consisted of tensile loading at a constant rate of 0.1 s−1 to an applied strain of 0.0025, followed by a load

reversal at the same strain rate back to zero strain.

Figure 5 Dislocation configurations corresponding to points labeled on
the simulated stress-strain diagram (Fig. 4) for the crystal with an em-
bedded particle (not shown). The figure shows dislocation configurations
for (a) Frank-Read source at the beginning of elastic deformation in ten-
sion; (b) at the beginning of plastic deformation in tension; (c) just after
the beginning of plastic deformation in tension; (d) at the strain reversal
point; (e) at the beginning of plastic deformation in compression; and (f)
at the end of the loading and unloading cycle.

particle covers the underlying dislocation structure. It is
observed in Fig. 5a that the dislocation configuration at
the early stage of deformation is significantly different
from the case with no particle. The stress field induced

by the misfit particle is sufficient to activate the source
and draws the dislocation upwards in the slip plane
while the applied stress field is trying to pull the dis-
location away in the other direction thus distorting the
dislocation into an s-shape. A higher applied stress is
thus needed to activate the Frank-Read mechanism than
in the case with no particle, resulting in a higher elastic
limit for the material. Fig. 5b shows the onset of plastic
yielding. Parts of the dislocation are outside the domain.
However, it is apparent that the particle-induced stress
field has trapped the left portion of the dislocation. The
applied stress causes the right portion to loop around
the right pinning point, but, as it sweeps back, the origi-
nal left portion in conjunction with the combined stress
field forces it to stop and a pile-up starts to develop. This
is shown in Fig. 5c. The original loop remains pinned
and the second one is now operating. Similar actions
repeat themselves and more loops are building up. This
dislocation pile-up causes an increase in stress required
to generate more new loops (i.e., to continue the plastic
flow in the material). The looping action continues un-
til the radius of the inner loop becomes too small and
subsequent loop generations result in the collapse and
annihilation of inner loops, thus preventing additional
pile-up and resulting in a relatively constant flow stress
value. The loop configuration at the load reversal point
is shown in Fig. 5d. Upon load reversal the applied
stress is decreased and the loops enlarge and open up.
When the stress becomes compressive the dislocations
are drawn in the opposite direction. Fig. 5e shows the
configuration of the dislocation loops at around the re-
versed yield point. The outermost dislocation is nearly
straight and is on the verge of bowing out in the up-
ward direction. Dislocations start to pile up on the op-
posite side of the particle resulting in a buildup of loops.
The configuration at the end of the load-unload cycle
is shown in Fig. 5f. Although the dislocation density in
this compressive phase is higher than that in the pre-
vious tensile phase, many mobile segments are able to
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Figure 6 Simulated uniaxial stress-strain response of the crystal with an embedded particle of radius 2,000 b. The Burgers vector of the gliding
dislocation is b√

2
[101̄]. The simulation consisted of compressive loading at a constant rate of 0.1 s−1 to an applied strain of 0.0025, followed by a

load reversal at the same strain rate back to zero strain.

sweep through the slip plane and carry the plastic flow
at a lower macroscopic stress.

Although the early reversed yielding in Fig. 4 is ev-
ident, care should be taken in drawing a direct con-
nection with the commonly conceived Bauschinger ef-
fect. This is because the current simulation results are
found to be independent of the loading sequence, as pre-
sented Fig. 6 where the simulated stress-strain response
is shown for the compression-first loading, followed by
reversed loading into the tensile yielding regime. Here
the compressive flow stress is about 38 MPa and the
subsequent tensile flow stress is about 95 MPa. Ap-
parently there is no early tensile yielding when the
compression-first history is adopted. The fact that the
flow stress magnitudes are approximately the same as
those in the tension-first case suggests that the mis-
fit elastic field results in a shift in the flow stress to-
wards the tensile direction for the particular problem
configuration considered, regardless of the history of
the uniaxial deformation. There is, however, also a net
increase in the sum of the magnitudes of tensile and
compressive flow stresses compared to the particle-
free case, meaning that a net strengthening effect
exists.

Fig. 7a–f show the snapshots of dislocation configu-
ration corresponding to points a, b, c, d, e and f high-
lighted in Fig. 6. The major difference between the
configurations shown in Figs 5 and 7 are in the early
configuration. It is observed in Fig. 7a that the par-
ticle induced stress and applied stress act together in
this case to pull the dislocation upward. From Fig. 7b
to d, when the material is undergoing strain harden-
ing after yielding, piling-up of dislocation loops con-
tinues while the leading dislocation is impeded by the
particle induced stress field. From Fig. 7e the force
due to the cumulative pile-up reaches a critical point,
which causes the leading dislocation to break out so
a saturation plastic flow ensues. The looping action
is now similar to the motion observed in the previ-
ous case when under an applied compressive stress.

Figure 7 Dislocation configurations corresponding to points labeled on
simulated stress-strain diagram (Fig. 6) for the crystal with an embed-
ded particle. The figure shows dislocation configurations (a) at the be-
ginning of elastic deformation in compression; (b) at the beginning of
plastic deformation in compression; (c) just after the beginning of plastic
deformation in compression; (d) after generation of several dislocation
loops while still experiencing strain hardening; (e) at the beginning of
the saturation of plastic flow in compression; and (f) at the strain reversal
point of −0.0025 strain.

The configuration at the end of compressive loading,
shown in Fig. 7f, is almost identical to that at the end of
compressive loading for the previous tension-first case,
Fig. 5f.
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Figure 8 Strength differential (�σy = σ t
y − σ c

y ) caused by misfit particle as a function of normalized particle volume (the value of unity represents a
particle with radius 2,000 b).

3.2. Effect of particle size
One can define the strength differential within the
present context, �σy, similar to the case in Equation 3,
as

�σy = σ t
y − σ c

y , (14)

where σ t
y and σ c

y are the magnitudes of tensile and
compressive flow stresses (both are positive quanti-
ties), respectively, obtained from the DD simulation.
The strength differential caused by the misfit particle
of radius 2,000 b is 58 MPa. Calculations of various par-
ticle radii were also carried out to examine the effect of
particle size. All other simulation parameters remained
unchanged. Fig. 8 shows the variation of strength dif-
ferential as a function of particle volume. The particle
volume in the figure is normalized by that of the 2,000
b-radius particle. The relationship is approximately lin-

Figure 9 Strain rate effect for the crystal containing a particle with a radius of 2,000 b and a volumetric misfit of 3%.

ear. Owing to the model setup, a smaller particle means
that the prescribed slip plane is at a greater distance
from the particle edge, and thus a weaker local stress
field is interfering with the dislocation glide.

3.3. Effect of strain rate
The simulation results presented thus far are based on
an applied strain rate of 0.1 s−1. The effect of strain rate
is examined by carrying out calculations using two ad-
ditional magnitudes: 1.0 and 10 s−1. In the cases where
no particle exists, the magnitudes of tensile and com-
pressive flow stresses are equivalent for a given strain
rate (i.e., �σy = 0). The flow stress values for the
pure matrix are 52, 53 and 83 MPa for the strain rates
of 0.1, 1.0 and 10 s−1, respectively. The flow stress in-
creases with strain rate, although the difference between
the cases of 0.1 and 1.0 s−1 is small. Fig. 9 shows the
strain rate effect for the material containing a particle
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of radius of 2,000 b. Here the quantities of tensile flow
stress σ t

y, compressive flow stress σ c
y , and strength dif-

ferential �σy are included in the same plot. It can be
observed that, while strain-rate sensitivity of the flow
stress is evident, the strength differential remains rela-
tively unaffected by the applied strain rate. This can be
explained by the fact that a higher strain rate results in a
faster driven dislocation motion and therefore less effi-
cient pile-up of loops for enhancing the bias in reversed
yielding.

4. Discussion
While the present work is motivated by the Bauschinger
effect for metals and alloys, the strength differential ob-
tained from the DD simulation manifests itself in a dif-
ferent way. In the Bauschinger effect and the associated
back stress concept, the yield strength during reversed
loading is smaller than that in forward loading, regard-
less if the test is tension-first or compression-first. Here,
the misfit elastic field results in a bias of flow stress to-
ward one direction. This, of course, is because of the
problem geometry that the glide plane is not intercept-
ing the particle. There are two main reasons for set-
ting up the problem as such. Firstly, as mentioned in
the introduction, a given dislocation loop in a material
of dilute particle concentration is expected to sweep a
large area in the matrix before encountering a particle
head-on. Therefore we devote our attention to the inter-
action between dislocations and the misfit elastic field
that exists throughout the matrix. Secondly, to capture
Orowan looping of dislocations around the particle and
therefore to investigate the physical nature of the com-
monly perceived “back stress”, one will need to include
the image stress effect in the simulation. It turns out
that incorporating image stresses in a rigorous way is
an extremely difficult task even for the simplest dislo-
cation and particle geometries. There have been very
specialized (and not necessarily closed-form) solutions
reported for some dislocation-particle interaction prob-
lems [28, 29]. Attempts have also been made on utiliz-
ing DD simulation to capture salient features of the
image stress effect for the special case of a circular
dislocation loop pile-up surrounding a short rigid fiber
[22]. Nevertheless, the current study does not include
any image stress in the simulations. It is felt that the ef-
fect of image stress is small because the main action of
image stress from a stiff particle is to retard the motion
of oncoming colliding dislocations and in the present
case the closest distance between the slip plane and the
particle edge is greater than 40% of the particle radius.

To test our assumption, calculations are carried out
setting the elastic constants of the particle the same
as those of the matrix (while keeping the misfit and
other loading and geometric conditions identical to the
standard case in Section 3). The results are shown in
Fig. 10a and b, where the tension-first and compression-
first loading, respectively, are presented. In both cases
the tensile plastic flow stress is about 80 MPa and com-
pressive plastic flow stress is about 37 MPa. It is ap-
parent, by comparing Fig. 10 with Figs 4 and 6, that
the absolute flow stress values and the strength differ-

ential are only mildly affected. This is a manifest that
the effect of image stress will not contribute much in
the present situation. The dislocation behavior is dom-
inated by the particle misfit field.

Since the combination of various forms of
dislocation-particle and dislocation-dislocation inter-
actions always takes place in actual experiments, the
sole effect of the misfit elastic field, as presently inves-
tigated, can only be studied by theoretical means. Our
results nevertheless illustrate the possible contribution
to strength differential originating from the misfit field.
This work focuses on the baseline that there is a single
initial dislocation source in a specified slip plane and
that a single particle exists in the crystal. The particular
geometric relationship between the dislocation source
and the particle chosen in this study also affects the
simulation outcome. As a consequence, care should be
taken in arbitrarily generalizing the present results to
actual crystal systems. Nevertheless, extension to mul-
tiple particles and multiple dislocation sources within
the present simulation framework can be achieved in a
straightforward manner to examine the effect of size,
spatial distribution and volume fraction of particles on
the strength differential and cyclic response in general.
This will be left as future work. It is worth mentioning,
at this juncture, that we have recently undertaken DD
simulations of monotonic loading of a crystal contain-
ing multiple particles [30].

While a clear strength differential was found in the
current study, the results shown in Figs 4 and 6 suggest
that the conceptual model in terms of Equations 1 and
2 does not apply in the present case. This is because it
is not possible to identify a single back stress value, σB,
in Equations 1 and 2 to describe the cyclic stress-strain
response, which involves net strengthening as discussed
above. Here, we propose the following modification to
describe our simulation results,

σ t
y = σ0 + σps + σB, (15)

and

σ c
y = σ0 + σps − σB, (16)

where the subscript in σps stands for “particle strength-
ening.” Taking σ0 as 52 MPa (from Fig. 2, the plastic
flow stress without particle) along with σ t

y = 94 MPa
and σ c

y = 36 MPa for the particle with radius 2,000 b
(or, particle volume fraction 3.35%), it is obtained that
σps = 13.0 MPa and σB = 29.0 MPa. Utilizing particle
volume fraction as a measure and applying linear inter-
polation, the net particle strengthening stress and back
stress are enhanced by about 3.8 and 8.7 MPa, respec-
tively, for every 1% increase in particle concentration.
Although our computational model is an idealized spe-
cial case, the net particle strengthening effect is not
at much variance with experimental measurements on
6013 aluminum alloys containing silicon carbide par-
ticles [31], which showed an increase in yield strength
of about 3.5 MPa per 1% particle volume fraction. Ex-
perimental information on misfit particle induced back
stress is not readily available.
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Figure 10 Simulated uniaxial stress-strain response of the crystal with an embedded particle of radius 2,000 b. The Burgers vector of the gliding
dislocation is b√

2
[101̄]. The strain rate is 0.1 s−1. (a) Tension-first loading; (b) compression-first loading.

As depicted in Fig. 1, the initial Frank-Read source is
not at a symmetric location with respect to the particle
(i.e., it is biased toward one side away from the particle
edge), so a concern may arise that the strength differen-
tial may be a natural consequence of this geometric bias.
To test this we undertake a simulation involving a sec-
ond Frank-Read source lying in another (111) plane as
shown in Fig. 11a. The two (111) planes are symmetric
about the particle and the two Frank-Read sources are
geometrically arranged such that the center of particle
is the “inversion center” of the two dislocations before
and during deformation. The particle radius is 2,000 b
and the tension-first loading has an applied strain rate
of 0.1 s−1. All other parameters remain the same. If no
particle exists, the simulated stress-strain response was
found to be essentially the same as in Fig. 2, imply-
ing minimal interaction of dislocations in the two slip

planes, which are spaced quite far apart. Fig. 11b shows
the stress-strain response of the crystal containing the
particle. It is clear that the strength differential exists.
The response appears essentially the same as in Fig. 4.
As a consequence, the strength differential observed
from the present simulation study is not an artifact of
the problem setup.

Further tests are conducted using only one dislo-
cation source. Again the case of Fig. 4 serves as a
basis for comparison. Fig. 12 shows the stress-strain
response using the same simulation parameters as in
Fig. 4 except that the Burgers vector is now reversed
(i.e., b√

2
[1̄01]). The similarity between the two figures

is evident. Although the misfit field caused by the par-
ticle exerts a force on the dislocation in the opposite
direction, the same applied load also tends to move the
dislocation in this opposite direction. The net outcome
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(a)

(b)

Figure 11 (a) Schematic of the problem geometry with two Frank-Read dislocation sources on (111) planes that are symmetric about the particle.
The origin is set at the center of the cube (and the particle of radius 2000 b). The dislocation sources are both parallel to the [1̄10] direction. One
source has two end nodes pinned at the coordinates of x = 1667 b, y = −3333 b, z = −3333 b and x = −3333 b, y = 1667 b, z = −3333 b, with a
Burgers vector of b√

2
[101̄]. The other source has two end nodes pinned at the coordinates of x = 3333 b, y = −1667 b, z = 3333 b and x = −1667

b, y = 3333 b, z = 3333 b, with a Burgers vector of b√
2

[1̄01]. (b) Simulated uniaxial stress-strain response of the model depicted in (a).

Figure 12 Simulated uniaxial stress-strain response of the crystal with an embedded particle of radius 2,000 b. The Burgers vector of the gliding
dislocation is b√

2
[1̄01]. The simulation consisted of tensile loading at a constant rate of 0.1 s−1 to an applied strain of 0.0025, followed by a load

reversal at the same strain rate back to zero strain.
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Figure 13 Simulated uniaxial stress-strain response of the crystal with an embedded particle of radius 2,000 b. The Burgers vector of the gliding
dislocation is b√

2
[101̄]. The simulation consisted of tensile loading at a constant rate of 0.1 s−1 to an applied strain of 0.0025, followed by a load

reversal at the same strain rate back to zero strain. The dislocation source is placed at a symmetric location, with reference to the case of Fig. 4, with
the two end points pinned at the coordinates of x = 3333 b, y = −1667 b, z = 3333 b and x = −1667 b, y = 3333 b, z = 3333 b.

is that the same type of bias in flow stress exists for
the two cases (Figs 4 and 12). When the single dislo-
cation source is placed at the symmetric location (see
Fig. 11a, but with only one source with Burgers vec-
tor b√

2
[101̄] in the upper (111) plane), essentially the

same kind of strength differential results, Fig. 13. This
is easily understood, again due to the fact that both the
particle stress field and applied stress field tend to pro-
mote dislocation glide in the same direction.

5. Conclusions
Micromechanical simulations of dislocation-particle
interactions in a crystal containing a misfit particle were
performed using dislocation dynamics. Attention is fo-
cused on continuous forward and reversed loading and
the associated macroscopic strength differential. It was
found that, even when the slip plane does not intersect
the particle, the misfit elastic stress field still interferes
with the dislocation motion so pile-up of dislocation
loops can develop. The formation of dislocation sub-
structure in turn gives rise to strength differential. The
plastic flow stress is higher in tension than in compres-
sion for the special problem configuration considered in
this study. The misfit particle induced strength differen-
tial is independent of the loading sequence (tension-first
vs. compression-first). The strength differential is not
merely a shift in stress-strain response toward one di-
rection because, as quantified in this study, there is also
a net strengthening effect due to the particle. The effect
of strength differential becomes larger with increasing
particle size. While the overall response showed the
typical strain rate hardening effect, the strength differ-
ential is largely unaffected by the applied strain rate.
This fundamental study illustrates the possible contri-
bution of dislocation-misfit particle interaction, other
than the commonly recognized Orowan mechanism, to

the buildup of back stress and the cyclic strength dif-
ferential behavior in metals and alloys.
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